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Abstract

In a previous work, convective heating of carbon dioxide was studied with neural networks (NN), obtaining a totally

heuristical heat transfer equation from the direct regression of experimental data. In the present work, the analysis

focuses on the cooling process, which has a technical relevance in various applications, as for example in transcritical

refrigeration cycles. Heat transfer around the critical zone presents a marked enhancement, that follows the peaks in

thermophysical properties like thermal conductivity and heat capacity. Similarly, other properties like density and

enthalpy, present a strong variation in narrow temperature intervals around the critical point.

This constitutes then a highly non-linear phenomenon, for which it is advisable to use a very flexible function ap-

proximator like the NNs. NN models were applied both in terms of dimensionless numbers and of physical quantities,

obtaining the two corresponding NN architectures. The choice of the optimal number of neurons in the NN hidden

layer is discussed. The NN models are then compared with a recent correlation from literature, for which the validation

results present an AAD of 27% and a bias of )26% with an evident prediction shifting. On the other hand the NN

models in terms of dimensionless numbers and of physical quantities have AAD and bias of 14% and )4%, and of 7%

and )2%, respectively, showing a largely better performance.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon dioxide is currently considered an environ-

mentally �benign� refrigerant for domestic and industrial

applications. Besides, it is often used in chemical engi-

neering for supercritical extraction. In transcritical in-

verse cycles, the heat rejection is very important and

such process, called gas cooling, takes place without

phase change, since the working fluid is at a supercritical

pressure. Anyway, the fluid undergoes important chan-

ges in thermophysical properties in narrow temperature

intervals close to the critical point, where the heat
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transfer rates simultaneously present a marked en-

hancement.

Recently, an experimental work has appeared with a

considerable number of regularly distributed measure-

ments [1]. Such a data base seems optimal for the de-

velopment of a heuristical method of heat transfer

analysis. The literature presents some further few sour-

ces [2–4] with a smaller number of points.
2. Conventional heat transfer equation

In the near-critical region the thermophysical prop-

erties present very peculiar trends. Moving for example

along isobars at supercritical pressures there is a tem-

perature at which the isobaric heat capacity reaches a

maximum; such temperature is called �pseudo-critical�
temperature and is indicated by Tm [5]. At each pressure

P , there is a unique Tm and a �pseudo-critical� line TmðP Þ,
ed.
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Nomenclature

AAD average absolute deviation

Bias bias

cP isobaric heat capacity, kJ/kgK

�ccP averaged isobaric heat capacity, kJ/kgK

D diameter, m

ff friction factor

fob objective function

f ðxÞ transfer function

h fluid enthalpy, kJ/kg

I number of neurons in input layer

J number of neurons in hidden layer

K number of neurons in output layer

L length, m

_mm mass flow rate, kg/m2 s

NPT number of points

Nu Nusselt number

P pressure, MPa

Pr Prandtl number

_qq heat flux, kW/m2

Re Reynolds number

Si output layer value

T temperature, K

u fluid velocity, m/s

Ui input layer value

Vi physical input

Wk physical output

Greek symbols

a heat transfer coefficient, kW/m2 K

k thermal conductivity, W/mK

q density, kg/m3

Subscripts

CP constant properties

b at bulk

c critical

m pseudo-critical

r reduced

SC supercritical

w at wall
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or equivalently PmðT Þ, can be then defined, which is also

considered as a sort of prolongation of the saturation

line PSðT Þ. Crossing the pseudo-critical line the fluid

undergoes a sort of phase-change, passing, at decreasing

T , from a gas-like state to a liquid-like state. Corre-

spondingly, there is an abrupt change of thermophysical

properties like density and viscosity. The thermal con-

ductivity shows instead a peak similar to that of heat

capacity, though less pronounced [6]. A peak in the

trend of the convective heat transfer coefficient was ex-

perimentally verified as well [7].

Very accurate models are required to represent

thermophysical properties in the critical and near-criti-

cal zones and in the present work the Span et al. [8]

thermodynamic properties formulation for carbon di-

oxide and the Vesovic et al. [9,10] transport properties

formulation were adopted. Traditional models appeared

in literature for the cooling of supercritical carbon

dioxide [4] are direct modifications of either the Dittus–

Boelter or Gnielinski correlations for single-phase con-

vective heat transfer, with the inclusion of additional

terms that take into account the property variation of

the fluid between bulk and wall conditions, following an

approach already proposed for the heating of super-

critical carbon dioxide [2]. These terms, which are nee-

ded to improve the representation of experimental data,

are substantially empirical, and were developed by �trial-
and-error�.

Recently, a new correlation was proposed by Pitla

et al. [11]. This is based on the ‘‘mean Nusselt number’’

defined as
Nu ¼ Nuw þ Nub

2

� �
kw

kb

ð1Þ

where Nuw and Nub are the Nusselt numbers relative to

wall and bulk conditions, respectively, which are both

evaluated through the Gnielinski [12] correlation:

Nu ¼ ff=2ðRe� 1000ÞPr
12:7

ffiffiffiffiffiffiffiffiffi
ff=2

p
ðPr2=3 � 1Þ þ 1:07

ð2Þ

Finally, the heat transfer coefficient reads

a ¼ Nu
D

kb ð3Þ

The authors state that the above correlation outper-

forms the older one by Baskov et al. [4] so that the

present correlation will be taken as the term of com-

parison for the neural network (NN) models develop-

ment.
3. Neural networks in terms of dimensionless numbers

A new correlation technique is proposed here, based

on NN. The NN have already been applied to direct

correlation of experimental data of the heat transfer

coefficient as a function of the working conditions, for

the case of supercritical carbon dioxide heating [13].

Among the different NN architectures, the multilayer

feedforward neural network (MLFN) with only one

hidden layer looks to be very effective as a universal

approximator of continuous functions in a compact



Input layer Hidden layer Output layer

I=5 J+1 K=1

U1

U2

U3

S1

(wij)

(wjk)

Bias1

Bias2

H1

U4

H2

H3

H4

Hj

Fig. 1. Schematic representation of the MLFN for the first

architecture.
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domain [14,15]. A MLFN contains several neuron layers

(multilayer) and in it the information goes in only one

direction, from input to output (feedforward).

In the former study [13], four architectures were ap-

plied to the regression of heat transfer coefficients as

functions of working conditions. Two of these four ar-

chitectures proved to be clearly superior to the other

ones and these will be employed in the present work as

well. The two proposed architectures differ for the type

of input and output variables considered in the regres-

sion. The mathematical formulation is instead quite

similar, as they both refer to the modular structure of a

MLFN.

The NN correlations developed in [13] for the case of

CO2 supercritical heating cannot be transferred to the

case of supercritical cooling because the temperature

radial profile are opposite in the two cases. The conse-

quent effects on the linked thermophysical properties

appeared to present quite different trends.

The weighted summation of all the neurons in the

previous layer are made at each neuron in a layer and

this summation is then given as input to a transfer

function. In the present work such transfer function is a

sigmoid function having the form

f ðxÞ ¼ b
1

1þ e�2cx
ð4Þ

Two positive parameters are applied in Eq. (4) to make

the function�s behaviour more flexible: b changes the

activation span and c determines the steepness of the

sigmoid function.

Setting the number of neurons in the three layers

determines the MLFN topology, for which I represents

the number of neurons in the input layer, including the

bias term, and K the number of neurons in the output

layer.

The number of neurons in the hidden layer J , apart
the bias, is found by trial and error during the NN

training. In the present cases, the optimal value of J , as
an ideal compromise between computational speed and

accuracy of the resulting function, was found to be 6.

In the first proposed architecture the independent

variables of the system, indicated with V1, V2, V3, V4, were

selected as

V1 ¼ Re V2 ¼ Pr V3 ¼
qw

qb

� �
V4 ¼

�ccP
cP ;b

 !

while the actual output W1 was chosen as

W1 ¼ Nu

The Nu, Re and Pr numbers are calculated at the bulk

conditions, whereas �ccP is the isobaric heat capacity cal-

culated at arithmetic mean conditions between bulk and

wall. In the proposed architecture, as shown in Fig. 1,

there are four real inputs and one real output, so it is:
I ¼ 5, K ¼ 1. It may be noted that the choice of inputs

and outputs resembles the classical choice for mono-

phase convective heat transfer correlations, but the two

terms qw

qb
and �ccP

cP ;b
take into account the property variation

along the radial coordinate. Such a variation can be very

marked, as explained in Section 1. Indicating Vi the

physical input in terms of dimensionless numbers

Re; Pr; qw

qb
; �ccP
cP ;b

� �
and Wk the physical output (Nu), the

analytical form of the present MLFN is

f ðxÞ ¼ b
1

1þ e�2cx
ð4Þ

sk ¼
Amax � Amin

Wmax;k � Wmin;k
ð5Þ

Wk ¼
Sk � Amin

sk
þ Wmin;k ð6Þ

Sk ¼ f
XJþ1

j¼1

wjkHj

 !
ð7Þ

Hj ¼ f
XI
i¼1

wijUi

 !
ð8Þ

ui ¼
Amax � Amin

Vmax;i � Vmin;i
ð9Þ

Ui ¼ uiðVi � Vmin;iÞ þ Amin ð10Þ

HJþ1 ¼ Bias 2 UI ¼ Bias 1

with

16 i6 I � 1 16 j6 J 16 k6K



Table 1

MLFN model parameters: architecture I accounting for property variations in terms of thermophysical properties

First version Second version

i j wij j k wjk i j wij j k wjk

1 1 0.115922· 103 1 1 0.333188· 102 1 1 0.100947· 102 1 1 )0.189968· 102

2 1 0.770661· 102 2 1 )0.290499· 103 2 1 0.141646· 102 2 1 0.340862· 103

3 1 )0.157987· 103 3 1 0.574304· 103 3 1 0.655262· 102 3 1 )0.105607· 103

4 1 )0.201239· 101 4 1 )0.397987· 103 4 1 0.170944· 102 4 1 )0.455067· 103

5 1 )0.765304· 102 5 1 )0.175657· 103 5 1 )0.161881· 102 5 1 )0.165567· 103

1 2 )0.620830· 102 6 1 0.428103· 102 1 2 0.128031· 103 6 1 )0.683557· 102

2 2 0.526176· 103 7 1 )0.816374· 102 2 2 )0.342502· 103 7 1 )0.102470· 103

3 2 0.161725· 103 3 2 0.349611· 102

4 2 )0.279331· 103 4 2 0.561040· 102

5 2 )0.101419· 103 5 2 0.648278· 102

1 3 0.610132· 102 1 3 )0.794504· 102

2 3 0.831573· 103 2 3 0.534532· 102

3 3 0.112848· 103 3 3 0.194784· 102

4 3 )0.948379· 101 4 3 0.695898· 101

5 3 )0.975638· 102 5 3 0.190055· 102

1 4 )0.189003· 103 1 4 )0.186614· 102

2 4 )0.229316· 102 2 4 )0.720431· 103

3 4 0.136870· 103 3 4 )0.573894· 102

4 4 0.103269· 103 4 4 )0.126289· 102

5 4 0.289749· 103 5 4 0.450589· 102

1 5 0.121851· 102 1 5 )0.117138· 103

2 5 0.125004· 103 2 5 )0.206921· 103

3 5 )0.256314· 103 3 5 )0.784626· 102

4 5 )0.189649· 102 4 5 )0.148818· 102

5 5 )0.329208· 103 5 5 )0.292379· 101

1 6 )0.172519· 103 1 6 )0.167950· 103

2 6 )0.162201· 103 2 6 )0.145573· 103

3 6 )0.107037· 102 3 6 )0.505729· 102

4 6 )0.200545· 103 4 6 0.116202· 102

5 6 )0.268736· 103 5 6 0.729134· 102

Vmin;1 � Remin 0 Vmin;1 � Remin 0

Vmax;1 � Remax 400,000 Vmax;1 � Remax 400,000

Vmin;2 � Prmin 0 Vmin;2 � Prmin 0

Vmax;2 � Prmax 30 Vmax;2 � Prmax 30

Vmin;3 � ðqw=qbÞ
min

1 Vmin;3 � ðqw=qbÞ
min

1

Vmax;3 � ðqw=qbÞ
max

10 Vmax;3 � ðqw=qbÞ
max

10

Vmin;4 � ð�ccP=cP ;bÞmin
0 Vmin;4 � ð�ccP=cP ;bÞmin

0

Vmax;4 � ð�ccP=cP ;bÞmax
5 Vmax;4 � ð�ccP=cP ;bÞmax

5

Wmin;1 � Numin 0 Wmin;1 � Numin 0

Wmax;1 � Numax 5000 Wmax;1 � Numax 5000

J 6 J 6

b 1.0 b 1.0

c 0.005 c 0.005

Amax 0.05 Amax 0.05

Amin 0.95 Amin 0.95

Bias 1 1.0 Bias 1 1.0

Bias 2 1.0 Bias 2 1.0

I 5 I 5

K 1 K 1

NPT training 391 NPT training 537

Training residual AAD 11.15% Training residual AAD 14.29%

Training residual Bias )2.42% Training residual Bias )3.35%
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Here J is the number of neurons in the hidden layer,

Amin and Amax are the allowable range limits of the

compressed input variables, Vmin;i and Vmax;i are the pre-

defined limits of the independent input variables, and

Wmin;k and Wmax;k are the pre-defined limits of the de-

pendent output variable. The quantities Vi and Wk are

the generic independent and dependent variables, re-

spectively. The transfer function defined in Eq. (4) is

recalled at Eqs. (7) and (8). In Eq. (7) the summation is

over the J þ 1 nodes of the hidden layer, whereas in Eq.

(8) it is over the I nodes of the input layer.

Considering the present problem characteristics, the

MLFN parameters are set here to the values reported

in the lower part of Table 1. Both the input variables

and the output function have thus been compressed

within the range 0.05–0.95. Given an experimental data

set of output Nui, in the independent variables

Re; Pr; qw

qb
; �ccP
cP ;b

� �
i
, the weighting factors wij and wjk of the

MLFN are found by minimizing the objective function:

fob ¼
1

NPT

XNPT

i¼1

Nucalc
i � Nuexp

i

Nuexp
i

� �2

ð11Þ

by means of a non linear optimization procedure. In Eq.

(11) NPT stands for the number of experimental points

of the training set.

After the training, the Nu equation is obtained as a

continuous function of Re; Pr; qw

qb
; �ccP
cP ;b

� �
. Two training

sets were selected, obtaining two sets of weighting fac-

tors, then originating two versions of the first NN ar-

chitecture. The first version was trained on only one

subset of the Olson data [1], which was randomly ex-

tracted for 391 points on a total of 1564, see second part

of Table 1. The Olson data [1] is by far the largest data

source available in literature. Their distribution is shown

in Fig. 2 in a ðTr; PrÞ plot, along with the carbon dioxide

saturation and pseudo-critical lines. It is evident that

most of the data have been taken in the proximity of the
0.95 1.00 1.05 1.10 1.15

0.5

1.0

1.5

2.0
 saturation line
 pseudocritical line
 experimental data [1]

P r

Tr

Fig. 2. Data distribution [1] in reduced temperature, reduced

pressure coordinates.
pseudo-critical line, where the thermophysical properties

show a very peculiar behaviour, and the peaks in the

heat transfer coefficient are present. Due to the corre-

lative mode of the method the validity range obtained

for the NN model is the same as for the reference data

[1] of the training set. Those data and the associated

validity range of the correlation quite homogeneously

cover the following ranges: 628006Re6 290000; 1:276
Pr6 20:75; 1:106 qw

qb
6 4:13; 0:196

�ccp
cp;b

6 3:07. Since the

method is totally heuristic, it is essential to have the

available experimental data evenly distributed. For

the time being, the data from the present source [1] are

the only ones fulfilling this requirement. It was decided

not to train the NN on all the available data without

considering their spatial consistency with respect to the

independent variables. In fact, the primitive data base

can be seen as a sparse set of points, whereas a MLFN,

as a universal function approximator, needs to be ap-

plied to a compact data domain according to the Kol-

mogorov theorem [16]. The mentioned validity ranges

have been based on this criterion.

The second version of the same architecture was

trained on an enlarged data set, including the former

subset from source [1], plus the previously-mentioned

points from the other sources concerning the cooling of

carbon dioxide [2–4], which fall inside the same range of

the dimensionless numbers Re; Pr; qw

qb
; �ccP
cP ;b

� �
as the Olson

data [1], regardless of their claimed accuracy. The same

statistical weights, accounting for the experimental un-

certainty, were assigned to all the data points for the

regression. The NPT of the training set, the weighting

factors, the NN parameters, together with the residual

deviations as AAD% are given in Table 1 for both the

first and the second versions of the present architecture.

As a general rule throughout all the present work

experimental points have never been excluded for their

error noise, but only to meet the correlations validity

ranges.
4. Neural networks in terms of physical variables

A second architecture can be furthermore considered

in which the independent variables are reduced pressure

Pr, reduced temperature Tr, mass flow rate _mm, and wall-

to-bulk temperature ratio Tw
Tb
:

V1 ¼ Pr V2 ¼ Tr V3 ¼ _mm V4 ¼
Tw

Tb

� �

whereas the dependent variable is the heat transfer co-

efficient a:

W1 ¼ a

The variables choice coincides in this second architec-

ture with the directly accessible physical variables,



Table 2

MLFN model parameters: architecture II accounting for property variations in terms of temperatures ratio

First version Second version

i j wij j k wjk i j wij j k wjk

1 1 0.254576· 104 1 1 0.114401· 104 1 1 0.901524· 102 1 1 )0.249547· 104

2 1 0.646935· 103 2 1 )0.222578· 104 2 1 0.302753· 104 2 1 0.283027· 104

3 1 )0.117798· 104 3 1 )0.248180· 104 3 1 )0.133688· 103 3 1 0.609804· 103

4 1 )0.171334· 104 4 1 0.394081· 104 4 1 )0.263573· 104 4 1 )0.910596· 103

5 1 0.117291· 104 5 1 )0.630242· 103 5 1 0.250458· 103 5 1 )0.276617· 103

1 2 0.498016· 103 6 1 )0.135844· 104 1 2 )0.911566· 103 6 1 )0.202142· 103

2 2 0.897912· 103 7 1 )0.811892· 103 2 2 0.621331· 104 7 1 )0.152865· 102

3 2 )0.314354· 104 3 2 )0.188479· 103

4 2 0.212981· 104 4 2 )0.240589· 104

5 2 )0.747656· 103 5 2 )0.891783· 103

1 3 0.116098· 104 1 3 0.872285· 103

2 3 0.159869· 104 2 3 0.203892· 104

3 3 )0.547768· 103 3 3 )0.175460· 103

4 3 )0.927638· 104 4 3 )0.347801· 104

5 3 0.474277· 104 5 3 0.832579· 103

1 4 )0.124808· 104 1 4 0.114331· 104

2 4 0.738315· 104 2 4 0.917624· 102

3 4 )0.270902· 103 3 4 )0.443613· 103

4 4 )0.426833· 104 4 4 0.393324· 103

5 4 )0.120640· 103 5 4 )0.162672· 102

1 5 0.491434· 103 1 5 )0.160871· 103

2 5 0.480785· 103 2 5 0.112843· 104

3 5 )0.607462· 102 3 5 )0.285709· 103

4 5 0.445707· 103 4 5 )0.122013· 103

5 5 0.628258· 103 5 5 )0.241125· 103

1 6 )0.101112· 103 1 6 0.621787· 103

2 6 0.166935· 104 2 6 )0.321788· 103

3 6 )0.275145· 103 3 6 )0.538225· 103

4 6 )0.807149· 103 4 6 )0.267938· 103

5 6 0.567373· 102 5 6 )0.380485· 103

Vmin;1 � Pmin
r 0.8 Vmin;1 � Pmin

r 0.8

Vmax;1 � Pmax
r 2.0 Vmax;1 � Pmax

r 2.0

Vmin;2 � Tmin
r 0.7 Vmin;2 � Tmin

r 0.7

Vmax;2 � Tmax
r 1.4 Vmax;2 � Tmax

r 1.4

Vmin;3 � _mmmin 0 Vmin;3 � _mmmin 0

Vmax;3 � _mmmax 1200 Vmax;3 � _mmmax 1200

Vmin;4 � ðTw=TbÞmin
0.6 Vmin;4 � ðTw=TbÞmin

0.6

Vmax;4 � ðTw=TbÞmax
1.3 Vmax;4 � ðTw=TbÞmax

1.3

Wmin;1 � hmin 0 Wmin;1 � hmin 0

Wmax;1 � hmax 30 Wmax;1 � hmax 30

J 6 J 6

b 1.0 b 1.0

c 0.005 c 0.005

Amax 0.05 Amax 0.05

Amin 0.95 Amin 0.95

Bias 1 1.0 Bias 1 1.0

Bias 2 1.0 Bias 2 1.0

I 5 I 5

K 1 K 1

NPT training 391 NPT training 488

Training residual AAD 3.19% Training residual AAD 8.40%

Training residual Bias )0.24% Training residual Bias )1.62%
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Fig. 3. Validation test of the MLFN as a function approxi-

mator of the heat transfer data of Olson [1], with decreasing

numbers of hidden neurons.

G. Scalabrin et al. / International Journal of Heat and Mass Transfer 46 (2003) 4413–4425 4419
avoiding the need for any thermophysical model for the

target fluid. The effect of radial property variation is

accounted for by the temperature ratio Tw
Tb
.

Two versions of the second architecture were ob-

tained, as for the former study for heating [13], selecting

a training set for each of them. The first version was

trained only on a subset of Olson data [1] composed of

391 points on a total of 1564. The validity range of this

correlation is the same of the data subset [1] used for the

NN training. The data regularly cover the ranges of

physical quantities: 1:0056 Pr 6 1:771; 0:9946 Tr 6

1:095; 2646 _mm6 884 kg/m2 s; 0:8986 Tw
Tb

6 0:994. The

second version was trained on an enlarged data set, in-

cluding the Olson data [1] subset, plus the points from

the other sources within the same range of the physical

quantities Pr; Tr; _mm; ðTw=TbÞ½ � as the reference data [1].

The weighting factors wij and wjk and all the parameters

needed to implement the obtained MLFNs are given in

Table 2 for both the first and the second architecture

versions.

Given an experimental data set of the output ai, in

the independent variables Pr; Tr; _mm; ðTw=TbÞ½ �, the weight-

ing factors are found by minimizing the objective func-

tion:

fob ¼
1

NPT

XNPT

i¼1

acalc
i � aexp

i

aexp
i

� �2

ð12Þ

The choice of hidden neurons J is crucial in any NN

application. Such a parameter is in principle unknown

and must be determined by trial-and-error. As an ex-

ample, considering the training of the first version of the

second architecture, a NN with J ¼ 8 was initially set

up, obtaining a low deviation both for the training set,

that is a random selection from [1], and for the valida-

tion set, that is the whole source [1]. Successively, the

number of hidden neurons was progressively dimin-

ished, and correspondingly different NNs were trained

and validated. The object of this study was to determine

the minimum number of neurons assuring a convenient

representation of the data set in terms of AAD. The

AAD obtained for both the training set and the vali-

dation set, for the various NNs with different numbers

of neurons J , is shown in Fig. 3. It appears that, for

J > 4 the training residual AAD, and the AAD on the

validation set, is acceptable, while for a number of

hidden neurons less than 4, these figures dramatically

increase. So it comes that four is the minimum number

of neurons to have a satisfactory representation of the

phenomenon. An overfitting is not evident for the higher

values of J considered, since the AAD of the validation

set is always quite close to the training residual AAD. It

is then reasonable to choose a value for J between 5 and

8 and J ¼ 6 was finally posed.

After training, the heat transfer coefficient can be

expressed as a continuous function a ¼ a Pr; Tr; _mm;½
ðTw=TbÞ�.
Considering the data set by Olson [1] it was decided

to better analyze the data region bounded by 1:0046
Pr 6 1:126 and 0:9946 Tr 6 1:017 which, being close to

the critical point and including the pseudocritical line, is

expected to present an evident heat transfer enhance-

ment. Such a zone encompass 904 data points, which is

the majority of the source [1]. A further version of the

second NN architecture was consequently obtained,

whose parameters are given in Table 3. This third ver-

sion is dedicated to the near-critical zone, where its

performance is better with respect to the second version.

The regression was developed on all the 904 data points,

obtaining a residual AAD of 3.39% and a bias of

)0.46%. This last version has the following validity

ranges: 1:0046 Pr 6 1:126; 0:9946 Tr 6 1:017; 2646 _mm6

884 kg/m2 s; 0:9616 Tw
Tb

6 0:994. Outside these ranges,

one should go back to the second version of NN.
5. Validation results

The four NN models previously described were tested

and the data sources were first of all validated against

the conventional equation in order to check their con-

sistency. The validation results of the Pitla conventional

equation ((1)–(3)) with respect to the literature sources

considered [1–4], are given in Table 4. In the present

work the error deviations (D%), the average absolute

deviation (AAD%) and the bias (Bias%) are evaluated as

ðD%Þi ¼
xexpi � xcalci

xcalci

	 100

AAD% ¼ 1

NPT

XNPT

i¼1

jD%ji

Bias% ¼ 1

NPT

XNPT

i¼1

ðD%Þi ð13Þ



Table 3

MLFN model parameters: architecture II version for the near-critical zone within the range 1:0046 Pr 6 1:126 and 0:9946 Tr 6 1:017

Third version

i j wij j k wjk

1 1 0.263517· 104 1 1 )0.763325· 102

2 1 0.387193· 104 2 1 )0.307424· 102

3 1 )0.237990· 104 3 1 )0.387029· 102

4 1 )0.638145· 104 4 1 )0.379542· 104

5 1 0.181845· 104 5 1 )0.297639· 103

1 2 0.291374· 104 6 1 0.387413· 104

2 2 0.207044· 103 7 1 0.162806· 103

3 2 )0.881127· 104

4 2 )0.963407· 104

5 2 0.877050· 104

1 3 0.736562· 103

2 3 0.190111· 103

3 3 )0.109774· 104

4 3 )0.168741· 104

5 3 )0.129334· 104

1 4 )0.264093· 104

2 4 0.165933· 105

3 4 )0.693673· 103

4 4 )0.146626· 105

5 4 0.180097· 104

1 5 0.120399· 103

2 5 0.395033· 103

3 5 0.210310· 103

4 5 0.450541· 103

5 5 0.338591· 103

1 6 )0.290182· 104

2 6 0.172523· 105

3 6 )0.670271· 103

4 6 )0.144981· 105

5 6 0.147572· 104

Vmin;1 � Pmin
r 0.8

Vmax;1 � Pmax
r 2.0

Vmin;2 � Tmin
r 0.7

Vmax;2 � Tmax
r 1.4

Vmin;3 � _mmmin 0

Vmax;3 � _mmmax 1200

Vmin;4 � ðTw=TbÞmin
0.6

Vmax;4 � ðTw=TbÞmax
1.3

Wmin;1 � hmin 0

Wmax;1 � hmax 30

J 6

b 1.0

c 0.005

Amax 0.05

Amin 0.95

Bias 1 1.0

Bias 2 1.0

I 5

K 1

NPT training 904

Training residual AAD 3.39%

Training residual Bias )0.46%
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Table 4

Validation of Pitla et al. [6] conventional equationa

Flowdirection NPT AAD% Bias% Max% Ref.

H 1564 26.53 )26.46 )58.66 [1]

H 80 21.70 )18.80 )70.94 [2]

V 109 30.28 )20.32 110.35 [3]

V 24 18.85 )9.66 )36.30 [4]

Overall 1777 26.44 )25.51 110.35

aH¼ horizontal, V¼ vertical, NPT¼ number of points, AAD¼ average absolute deviation, Max¼maximum deviation.

Table 5

Dimensionless numbers MLFN model validation (first and second versionsa ;b)

NPT NPT1 Pitla et al. equation MLFN 1st arch., 1st vers. MLFN 1st arch., 2nd vers. Ref.

AAD% Bias% Max% AAD% Bias% Max% AAD% Bias% Max%

1564 1564 26.53 )26.46 58.66 11.47 )2.23 32.47 13.49 )4.45 42.89 [1]

80 52 16.86 )13.11 64.81 20.07 )11.46 67.29 15.14 )11.80 )49.22 [2]

109 86 30.91 )21.66 110.35 23.54 19.51 75.54 18.00 8.82 51.54 [3]

24 8 29.84 )29.84 36.30 17.72 17.72 )25.55 16.29 )16.29 )23.04 [4]

1777 1710 26.47 )25.83 110.35 12.37 )1.49 75.54 13.78 )4.07 51.54

aH¼ horizontal, V¼ vertical, NPT¼ number of points, AAD¼ average absolute deviation, Max¼maximum deviation.
bNPT1: number of points in the validity range of the 1st architecture NN model; NPT2: number of points in the validity range of

the 2nd architecture NN model.

Table 6

Physical variables MLFN model validation (first and second versionsa ;b)

NPT NPT2 Pitla et al. equation MLFN 2nd Arch., 1st vers. MLFN 2nd Arch., 2nd vers. Ref.

AAD% Bias% Max% AAD% Bias% Max% AAD% Bias% Max%

1564 1564 26.53 )26.46 58.66 3.69 0.12 37.28 6.56 )1.96 35.30 [1]

80 43 23.68 )21.54 70.94 41.21 15.08 100.32 17.11 )12.45 )51.57 [2]

109 54 33.02 )19.27 110.35 29.25 13.47 111.12 21.13 6.39 59.59 [3]

24 0 – – – – – – – – – [4]

1777 1661 26.66 )26.10 110.35 5.49 0.94 111.12 7.31 )1.96 59.59

aH¼ horizontal, V¼ vertical, NPT¼ number of points, AAD¼ average absolute deviation, Max¼maximum deviation.
bNPT1: number of points in the validity range of the 1st architecture NN model; NPT2: number of points in the validity range of

the 2nd architecture NN model.
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where x is a dependent variable, which can be Nu or a,
and exp and calc stand for experimental and calculated

values, respectively.

The deviations with respect to the Pitla correlation

(P ) are quite large, Table 4, and in fact all the data

sources are underestimated from )10% up to )26%.

The validation of the NN model in terms of dimen-

sionless numbers, here indicated as the first architecture,

has been conducted only on the data points in the va-

lidity range of the model. For those points, a parallel

validation was developed for comparison with the con-

ventional equation and the results are given in Table 5

for the first and the second versions. The first version

represents the data source [1], on a subset of which it was

trained, with an AAD of 11.47%, which can be com-
pared with the AAD of 26.53% of the conventional

equation. This can be considered a high quality result,

since the claimed experimental uncertainty for the

source [1] is about 10%. The first version is generally

better than the conventional equation also in the rep-

resentation of the other sources not included in the

training set. This indicates a good prediction capability

of this architecture. In the second version of the first

architecture, some points from the other sources were

introduced in the regression, and the NN performance

was improved. In fact the sources [2–4] are better re-

produced with the second version than with the first one,

whereas the representation of the source [1] is slightly

worse. The AAD of the second version for this source is

13.49%, compared to 11.47% of the first version. This is
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probably due to some error noise of the data present in

the sources introduced in the regression. It was avoided

to search for an explanation of such a discrepancy, and

also to divide the data sources into primary and sec-

ondary. Furthermore, it may be noted from Table 1 that

the training residual AAD is quite high, 11.15% for the

first version and 14.29% for the second version, whereas

the training residual bias is relatively low, )2.42% and

)3.35% respectively. This again indicates a high error

noise of input data, in terms of dimensionless numbers

as inputs to the function Nu ¼ Nu Re; Pr; qw

qb

� �
; �ccP

cP ;b

� �h i
,

which may be combined with an uncertainty in the de-

termination of the thermophysical properties in the

near-critical zone [6]. Anyway, the performances of the

first architecture, in the second version, is always better

than the P correlation. In fact for some sources [3,4] the

AAD is nearly two times lower.

A similar validation was done for the NN model in

terms of physical quantities, i.e. for the second archi-

tecture. The results are shown in Table 6 for the first and

the second versions. The first version represents the data

from [1], on a subset of which it was trained, much better

than the conventional P equation: the AAD of the two

models for the source [1] is 3.69% and 26.53% respec-

tively. Other sources, as for instance [2], are better rep-

resented by the P correlation. Comparing this second

architecture with the first one, it shows a more limited

prediction capability with respect to those sources not

included in the training set. In the second version of this

architecture, when also these sources are included in the

training set, a significative improvement of representa-

tion is obtained also for them. Globally, the results are
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Fig. 4. Heat transfer coefficient as function of the mass flow rate, as fr

version and from the P correlation.
much better than the conventional equation. It must be

noted that, introducing in the regression all the other

sources, brings about a worse representation of the main

source [1]; in fact the AAD on this source nearly dou-

bles, moving from the first to the second version. This is

again due to the scattering between different experi-

mental sources. Anyway, looking at the training residual

AAD and Bias (Table 2) it can be seen that they are

quite low, if compared to the first architecture. This

indicates a better performance of the minimisation

procedure, that may be due to a data distribution which

is more suitable in terms of physical quantities than in

terms of dimensionless numbers.

It must be remarked that the second architecture,

avoiding the use of dimensionless numbers, for a target

fluid does not require any thermophysical models to

supply values of thermodynamics and transport prop-

erties. It is not possible to extend it to fluids different

from the target one, while the first architecture can be in

principle applied to any fluid, provided its thermo-

physical properties functions are known.

To examine the global behaviour of the proposed

NN equations, some plots will be presented, showing the

heat transfer trends, as function of various controlling

parameters, as predicted from the second architecture

NN model, first and third versions. The Fig. 4 shows the

heat transfer coefficient as function of the mass flow rate

as from the first version NN model and the P correla-

tion, together with experimental data. One can see that

the P correlation significantly underestimates the ex-

perimental points, while the NN model represents them

very well. Also from the bias reported in Table 4 for the

P correlation it is evident that this correlation always
600 700 800

r
=1.174 - 1.182

r =1.029 - 1.036
ulk=0.981 - 0.991

[kg/m2s]

om experimental data, from the second version NN model, first
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predicts a heat transfer coefficient value lower than the

data. In the remaining figures, no experimental data is

plotted because no homogeneous data series was found

in any source for the graph conditions.

Such feature of the P correlation will be highlighted

in the following figures where it is compared with the

third version of the second NN architecture, the one

dedicated to the near-critical zone. Fig. 5 plots the heat

transfer coefficient as function of the bulk temperature

Tb for various heat fluxes. The P correlation is always

shifted below the NN model, and moreover it presents

an unusual convex trend of the heat transfer coefficient

in the proximity of the pseudo-critical line, where a

minimum appears. Instead, from the NN model, which

is directly based on data, a maximum appears which is
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Fig. 5. Heat transfer coefficient as function of Tb for various

heat fluxes, as from the second architecture NN model, third

version, and from the P correlation.

Fig. 6. Heat transfer coefficient as function of Tb for various

heat fluxes, from Tanaka et al. [3].
also confirmed by other authors. In Fig. 6 it is in fact

reported a diagram from Tanaka et al. [3], where, for a

similar plot, the curves present a maximum. Both in

Figs. 5 and 6, a greater heat flux produces a lower heat

transfer coefficient, at the same other conditions.

The effect of the working pressure is illustrated in

Fig. 7, where again the P correlation is compared with

the second NN architecture, third version. It appears

that at pressures slightly greater than the critical, the two

models present different trends, while at higher super-

critical pressures (8.5 MPa) their behaviour is quite

similar. The peak in the heat transfer coefficient curves is

more accentuated at pressures closer to the critical point.

The �strange� behaviour of the P correlation takes place

just at pressures close to the critical, whereas at higher

pressures the P correlation recovers the �correct� trend.
Being constantly downshifted, and presenting such a

�non-physical� behaviour, the P model will not be con-

sidered any longer in the following graphs. Fig. 8 reports

the heat transfer curves for various mass fluxes. The

strong influence of this factor on the magnitude of the
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Fig. 7. Heat transfer coefficient as function of Tb for various

pressures, from the second architecture NN model, third ver-

sion, and from the P correlation.
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Fig. 8. Heat transfer coefficient as function of Tb for various

mass fluxes, from the second architecture NN model, third

version, and from the P correlation.



298 300 302 304 306 308 310 312 314
298

300

302

304

306

308

310

312

314

Tw
=Tb

Tb [K]

T w [
K]

P=75 bar
m=880 Kg/m2s
q=20 kW/m2

5000

10000

15000

20000

25000

α 
[W

/m
2 K]

Fig. 9. Heat transfer coefficient and wall temperature Tw as

functions of Tb from the second architecture NN model, third

version.

4424 G. Scalabrin et al. / International Journal of Heat and Mass Transfer 46 (2003) 4413–4425
heat transfer peak has to be pointed out: at higher mass

fluxes, the peak is greater.

Finally, Fig. 9 plots on the same diagram the heat

transfer coefficient a and the wall temperature Tw as

function of the bulk temperature Tb. It is evident that,

for a given heat flux _qq, in correspondence of the peak of

the heat transfer coefficient a the temperature difference

between bulk and wall reaches a minimum, meaning that

Tw tends to approach Tb with decreasing heat transfer

resistance.
6. Discussion

The representation of the heat transfer coefficient

surface for the supercritical cooling of carbon dioxide by

the proposed method has been shown to be very effec-

tive. It has been also demonstrated that the method may

be highly suitable to heuristically draw a heat transfer

surface only from experimental data of the heat transfer

coefficient.

The error noise of literature experimental data can be

an important drawback of the proposed method that

may reduce the final accuracy of the regressed surface.

As it is common for any heuristic method, the study of

the data base and its possible screening become ex-

tremely important.

As shown earlier, the data have to satisfy some basic

requirements: they have to form a domain as compact as

possible in the independent variables and scattered data

sets should be avoided within the validity ranges of the

equation. Moreover, the data points should be regularly

distributed on an ideal grid of the independent variables,

but these conditions are usually lacking for the data

currently available in the literature. In fact heuristic

methods have been rarely considered in the past for heat

transfer studies [17,18], so that the outlined requirements

for the data are not currently considered by the experi-

menters.
The results obtained for the present heat transfer

problem show that equations in the dimensionless

numbers or in the physical variables are equally effective

in practice, suggesting that for an individual fluid the

dimensionless analysis does not yield any evident ad-

vantage. Furthermore, it should be stressed that intro-

ducing the equation of state and the transport property

equations of a target fluid in a conventional heat

transfer correlation turns it into a fluid specific one.

Looking at the two works about supercritical carbon

dioxide convective heat transfer through a MLFN

technique, the former one for heating [13] and the pre-

sent one for cooling, one could wonder whether a single

heat transfer correlation could be drawn from data be-

ing able to represent both cases. Limiting our analysis

only to the present 2nd architecture for cooling and to

the former 4th architecture for heating [13], both in the

physical variables, one can see that some limits are

posed mostly by the actual data distribution in terms of

reduced temperature and pressure and of radial tem-

perature gradients. In fact the Tr, Pr ranges of the data

sets for cooling, Fig. 2, and for heating are not at all

superimposing. Moreover the radial temperature ratios,

Tw=Tb, for the heating and cooling cases are higher and

lower than 1, respectively, and present quite different

ranges of values. In principle an extrapolation of one of

the two MLFN correlations to the other case is then not

allowed. However, if in the future some data sets for

heating and cooling could be available with superim-

posing Tr, Pr ranges, a single MLFN correlation would

be reasonably drawn from the comprehensive data set,

considering Tw=Tb values in a wider range both lower

and higher than 1.

The generalization problem of a transfer equation

can be studied in more detail only if regularly distributed

data are available for several fluids and with overlapping

ranges, but these conditions are very difficult to find in

the available experimental works. This suggests that the

problem would be experimentally worth studying from

this new point of view. For the heuristic nature of the

method both the data distribution and quality are evi-

dent key elements in the present case. It is also worth

noting that the method can be used to check the con-

sistency of new data sets before using them for pro-

cessing.

In the case the outlined requirements are strictly met,

the method proves capable of drawing a high-accuracy

heat transfer correlation, at the limit of the experimental

uncertainty, for the present difficult problem.
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